CoinRSS: Bitcoin, Ethereum, Crypto News and Price Data

  • CONTACT
  • MARKETCAP
  • BLOG
CoinRSS: Bitcoin, Ethereum, Crypto News and Price Data
  • BOOKMARKS
  • Blockchain
  • Crypto
    • Bitcoin
    • Ethereum
    • Forex
    • Tether
  • Market
    • Binance
    • Business
    • Investor
    • Money
    • Trading
  • News
    • Coinbase
    • Mining
    • NFT
    • Stocks
Reading: AI Models ‘Secretly’ Learn Capabilities Long Before They Show Them, Researchers Find
Share
You have not selected any currencies to display
CoinRSS: Bitcoin, Ethereum, Crypto News and Price DataCoinRSS: Bitcoin, Ethereum, Crypto News and Price Data
0
Font ResizerAa
  • Blockchain
  • Crypto
  • Market
  • News
Search
  • Blockchain
  • Crypto
    • Bitcoin
    • Ethereum
    • Forex
    • Tether
  • Market
    • Binance
    • Business
    • Investor
    • Money
    • Trading
  • News
    • Coinbase
    • Mining
    • NFT
    • Stocks
Have an existing account? Sign In
Follow US
© Foxiz News Network. Ruby Design Company. All Rights Reserved.
CoinRSS: Bitcoin, Ethereum, Crypto News and Price Data > Blog > News > AI Models ‘Secretly’ Learn Capabilities Long Before They Show Them, Researchers Find
News

AI Models ‘Secretly’ Learn Capabilities Long Before They Show Them, Researchers Find

CoinRSS
Last updated: November 25, 2024 6:47 am
CoinRSS Published November 25, 2024
Share

Modern AI models possess hidden capabilities that emerge suddenly and consistently during training, but these abilities remain concealed until prompted in specific ways, according to new research from Harvard and the University of Michigan.

The study, which analyzed how AI systems learn concepts like color and size, revealed that models often master these skills far earlier than standard tests suggest—a finding with major implications for AI safety and development.

“Our results demonstrate that measuring an AI system’s capabilities is more complex than previously thought,” the research paper says. “A model might appear incompetent when given standard prompts while actually possessing sophisticated abilities that only emerge under specific conditions.”

This advancement joins a growing body of research aimed at demystifying how AI models develop capabilities.

Anthropic researchers unveiled “dictionary learning,” a technique that mapped millions of neural connections within their Claude language model to specific concepts the AI understands, Decrypt reported earlier this year.

While approaches differ, these studies share a common goal: bringing transparency to what has primarily been considered AI’s “black box” of learning.

“We found millions of features which appear to correspond to interpretable concepts ranging from concrete objects like people, countries, and famous buildings to abstract ideas like emotions, writing styles, and reasoning steps,” Anthropic said in its research paper.

The researchers conducted extensive experiments using diffusion models—the most popular architecture for generative AI. While tracking how these models learned to manipulate basic concepts, they discovered a consistent pattern: capabilities emerged in distinct phases, with a sharp transition point marking when the model acquired new abilities.

Models showed mastery of concepts up to 2,000 training steps earlier than standard testing could detect. Strong concepts emerged around 6,000 steps, while weaker ones appeared around 20,000 steps.

When researchers adjusted the “concept signal,” the clarity with which ideas were presented in training data.

They found direct correlations with learning speed. Alternative prompting methods could reliably extract hidden capabilities long before they appeared in standard tests.

This phenomenon of “hidden emergence” has significant implications for AI safety and evaluation. Traditional benchmarks may dramatically underestimate what models can actually do, potentially missing both beneficial and concerning capabilities.

Perhaps most intriguingly, the team discovered multiple ways to access these hidden capabilities. Using techniques they termed “linear latent intervention” and “overprompting,” researchers could reliably extract sophisticated behaviors from models long before these abilities appeared in standard tests.

In another case, researchers found that AI models learned to manipulate complex features like gender presentation and facial expressions before they could reliably demonstrate these abilities through standard prompts.

For example, models could accurately generate “smiling women” or “men with hats” individually before they could combine these features—yet detailed analysis showed they had mastered the combination much earlier. They simply couldn’t express it through conventional prompting.

The sudden emergence of capabilities observed in this study might initially seem similar to grokking—where models abruptly demonstrate perfect test performance after extended training—but there are key differences.

While grokking occurs after a training plateau and involves the gradual refinement of representations on the same data distribution, this research shows capabilities emerging during active learning and involving out-of-distribution generalization.

The authors found sharp transitions in the model’s ability to manipulate concepts in novel ways, suggesting discrete phase changes rather than the gradual representation improvements seen in grokking.

In other words, it seems AI models internalize concepts way earlier than we thought, they are just not able to show their skills—kind of how some people may understand a movie in a foreign language but still struggle to properly speak it.

For the AI industry, this is a double-edged sword. The presence of hidden capabilities indicates models might be more potent than previously thought. Still, it also proves how difficult it is to understand and control what they can do fully.

Companies developing large language models and image generators may need to revise their testing protocols.

Traditional benchmarks, while still valuable, may need to be supplemented with more sophisticated evaluation methods that can detect hidden capabilities.

Edited by Sebastian Sinclair

Generally Intelligent Newsletter

A weekly AI journey narrated by Gen, a generative AI model.

Source link

You Might Also Like

Will Ethena [ENA] crack the $0.60 ceiling next? 3 signs say yes

Wyoming Governor Says State’s Long-Planned Stablecoin Could Launch by July

Ethereum holds firm above $1,770: Can bulls push to $2,030 next?

Quant [QNT] price prediction: As THIS flips bullish, is $128 coming?

Why Canada’s PM candidate Pierre Poilievre is all-in on crypto and DeFi

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Copy Link Print
Previous Article Aptos TVL hits ATH as APT targets 69% surge to $24 – Can it happen?
Next Article Solana: What are the 2 major factors helping SOL’s price soar?
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recipe Rating




Follow US

Find US on Socials
FacebookLike
TwitterFollow
YoutubeSubscribe
TelegramFollow
Subscribe to our newslettern

Get Newest Articles Instantly!

- Advertisement -
Ad image
Popular News
India, Indonesia lead as crypto fraud rises 200% in Q1 2025 – Report
BTC Price will Hit $100K before Bitcoin Sweeps $30K Lows
Crypto Bahamas: Regulations Enter Critical Stage as Gov’t Shows Interest

Follow Us on Socials

We use social media to react to breaking news, update supporters and share information

Twitter Youtube Telegram Linkedin
CoinRSS: Bitcoin, Ethereum, Crypto News and Price Data coin-rss-logo

We influence 20 million users and is the number one business blockchain and crypto news network on the planet.

Subscribe to our newsletter

You can be the first to find out the latest news and tips about trading, markets...

Ad imageAd image
© CoinRSS: Bitcoin, Ethereum, Crypto News and Price Data. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?